A product space reformulation with reduced dimension
Rubén Campoy (University of Valencia)
Abstract: The product space reformulation is a powerful trick when tackling monotone inclusions defined by finitely many operators with splitting algorithms. This technique constructs an equivalent two-operator problem, embedded in a product Hilbert space, that preserves computational tractability. Each operator in the original problem requires one dimension in the product space. In this talk, we propose a new reformulation with a reduction on the dimension of the outcoming product Hilbert space. We shall discuss the case of not necessarily convex feasibility problems. As an application, we obtain a new parallel variant of the Douglas-Rachford algorithm with a reduction in the number of variables. The computational advantage is illustrated through some numerical experiments.
optimization and control
Audience: researchers in the topic
Variational Analysis and Optimisation Webinar
Series comments: Register on www.mocao.org/va-webinar/ to receive information about the zoom connection.
| Organizers: | Hoa Bui*, Matthew Tam*, Minh Dao, Alex Kruger, Vera Roshchina*, Guoyin Li |
| *contact for this listing |
